This week I am organizing the XMM-Newton 2021 virtual workshop on the topic of “A high-energy view of exoplanets and their environments” as the chair of the Scientific Organizing Committee. We have over 350 participants, which is fantastic! The program and workshop website is here:
TESS phase curve of KELT-1b, from von Essen et al. (2021)In a recent work by Prof. Carolina von Essen, with large contributions from our group from the side of Dr. Matthias Mallonn (and minor contributions from myself), we investigate the TESS phase curve and the dayside temperature of KELT-1b, which is a bit too heavy to still be called a planet and is therefore classified as a low-mass brown dwarf.
From the abstract:
We present the detection and analysis of the phase curve of KELT-1b at optical wavelengths, analyzing data taken by the Transiting Exoplanet Survey Satellite (TESS) during cycle 2 and sector 17. With a mass of ~27 MJup, KELT-1b is an example of a low-mass brown dwarf. Due to the high mass and close proximity of its companion, the host star exhibits a TESS light curve that shows clear ellipsoidal variations. We modeled the data with a six-component model: secondary eclipse, phase curve accounting for reflected light and thermal emission, Doppler beaming, ellipsoidal variations, stellar activity, and the primary transit. We determined the secondary eclipse depth in the TESS bandpass to be 304 ± 75 parts-per-million (ppm). In addition, we measured the amplitude of the phase curve to be 128 ± 27 ppm, with a corresponding eastward offset between the region of maximum brightness and the substellar point of 19.2 ± 9.6 degrees, with the latter showing good agreement with Spitzer measurements. We determined a day-side brightness temperature in the TESS bandpass of 3201 ± 147 K that is approximately 200 K higher than the values determined from the Spitzer 3.6 and 4.5 μm data. By combining TESS and Spitzer eclipse depths, we derived a day-side effective temperature of Teff = 3010 ± 78 K. Previously published eclipse depths in the near-infrared suggest a much higher brightness temperature and this discrepancy cannot be explained by spectral models combined with the current data. We attribute those large eclipse depths to unmodeled ellipsoidal variations, which would typically be manifested as a deeper secondary eclipse in observations with insufficient phase coverage. A one-dimensional self-consistent atmospheric model is able to explain the TESS and Spitzer day-side brightness temperatures with thermal emission alone and no reflected light. The difference between the TESS and Spitzer brightness temperatures can be explained via CO absorption due to a non-inverted temperature profile. The night side data fix an upper limit of ~2000 K on the internal temperature of KELT-1 b.
Because Zenodo sometimes give a too-many-requests error during the conference, here’s a backup of my conference poster: Katja’s Cool Stars 20.5 poster on stellar coronal abundances and helium observations of exoplanet atmospheres
Paper on stellar winds blowing around our nearest exoplanet neighbour ?>
A recent work led by our Schwarzschild-Fellow Dr. Julián Alvarado-Gómez shows through numerical simulations that our nearest exoplanetary neighbour experiences a space weather environment similar to our own Earth. The planet is Proxima Centauri c, a planet a few times the size of the Earth, which orbits our nearest stellar neighbour Proxima Centauri in a roughly 5-year orbit.
Simulated stellar wind enviroment of the exoplanet Proxima Centauri c during a magnetic activity minimum of its host star, from Alvarado-Gómez et al. (2020).
From the abstract:
A new planet has been recently discovered around Proxima Centauri. With an orbital separation of ∼1.44 au and a minimum mass of about 7M⊕ , Proxima c is a prime direct imaging target for atmospheric characterization. The latter can only be performed with a good understanding of the space environment of the planet, as multiple processes can have profound effects on the atmospheric structure and evolution. Here, we take one step in this direction by generating physically realistic numerical simulations of Proxima’s stellar wind, coupled to a magnetosphere and ionosphere model around Proxima c. We evaluate their expected variation due to the magnetic cycle of the host star, as well as for plausible inclination angles for the exoplanet orbit. Our results indicate stellar wind dynamic pressures comparable to present-day Earth, with a slight increase (by a factor of 2) during high-activity periods of the star. A relatively weak interplanetary magnetic field at the distance of Proxima c leads to negligible stellar wind Joule heating of the upper atmosphere (about 10% of the solar wind contribution on Earth) for an Earth-like planetary magnetic field (0.3 G). Finally, we provide an assessment of the likely extreme conditions experienced by the exoplanet candidate Proxima d, tentatively located at 0.029 au with a minimum mass of 0.29 M⊕.
“An Earth-like Stellar Wind Environment for Proxima Centauri c”, Alvarado-Gómez, Julián D.; Drake, Jeremy J.; Garraffo, Cecilia; Cohen, Ofer; Poppenhaeger, Katja; Yadav, Rakesh K.; Moschou, Sofia P., The Astrophysical Journal Letters, Volume 902, Issue 1, id.L9, 7 pp. (2020).
Also featured in a Science Update by the Harvard-Smithsonian Center for Astrophysics.
Median fraction of stellar luminosity in flares plotted as a function of cluster age, from Ilin et al. (2020).
Ekaterina Ilin, a PhD student in my group, has recently published her work on stellar flares in three young and two middle-aged open clusters.
From the abstract: “Drawing from the complete K2 archive, we searched 3435∼80 day long light curves of 2111 open cluster members for flares using the open-source software packages K2SC to remove instrumental and astrophysical variability from K2 light curves, and AltaiPony to search and characterize the flare candidates. We confirmed a total of 3844 flares on high probability open cluster members with ages from zero age main sequence(Pleiades) to 3.6 Gyr (M67). We extended the mass range probed in the first study of this series to span from Sun-like stars to mid-Mdwarfs. We added the Hyades (690 Myr) to the sample as a comparison cluster to Praesepe (750 Myr), the 2.6 Gyr old Ruprecht 147, and several hundred light curves from the late K2 Campaigns in the remaining clusters. We found that the flare energy distribution was similar in the entire parameter space, following a power law relation with exponent a=1.84−2.39. We confirmed that flaring rates declined with age, and declined faster for higher mass stars. Our results are in good agreement with most previous statistical flare studies. We found evidence that a rapid decline in flaring activity occurred in M1-M2 dwarfs around Hyades/Praesepe age, when these stars spun down to rotation periods of about 10 d, while higher mass stars had already transitioned to lower flaring rates, and lower mass stars still resided in the saturated activity regime. We conclude that somediscrepancies between our results and flare studies that used rotation periods for their age estimates could be explained by sample selection bias toward more active stars, but others may hint at limitations of using rotation as an age indicator without additional constraints from stellar activity.”
Two new group members are starting their research here in fall 2020: Judy Chebly is a new PhD student who works with Julián Alvarado-Gómez and myself on simulations of coronal mass ejections in stars-planet systems, and Dr. Eliana Amazo-Gomez is a new postdoc who works on stellar rotation and activity. We’re very happy to have them on board!
Exoplanets III conference background imageThis week the Exoplanets III is taking place – it has been moved from Heidelberg into a virtual format because of the Covid-19 pandemic. I’m really excited about this particular conference, because it looks like a really well thought-out way to do an online conference, with all talks being available as videos for non-synchronous viewing, interactive online posters, and active discussion on Slack. Several of our group members are presenting their work:
PhD students:
Laura Ketzer: Poster “Using PLATYPOS to estimate the atmospheric mass loss of V1298 Tau’s four young planets”
Vada Xanthippi Alexoudi: Poster “On the degeneracy of the planetary spectral slope with orbital parameters”
Engin Keles: poster “Probing the atmosphere of HD189733b with the Na-I and K-I lines”
Postdocs/Prof:
Matthias Mallonn: poster “Challenging the weather forecast: the observational study of day side clouds”
myself: talk “Connecting the exoplanet radius gap with stellar activity evolution”
plus a few more are attending (Grace Foster, Nikoleta Ilic).
Paper on the atmospheric evaporation of four very young exoplanets ?>
The four young planets of V1298 Tau lose different fractions of their atmospheres, depending on the star’s spin-down behaviour (from Poppenhaeger et al. 2020).Together with my PhD student Laura Ketzer and postdoc Matthias Mallonn, we have published a new paper on the atmospheric evaporation of the four very young planets around the star V1298 Tau. We measured the star’s X-ray spectrum by combining ROSAT and Chandra observations, and found that the star is highly active with an X-ray luminosity above 10^30 erg/s. Laura developed a numerical code to estimate the planetary evaporation as the star ages and becomes less X-ray bright. Depending on the masses of the planetary cores and the age at which the star will start spinning down, some of the planets may lose their complete atmosphere by the time the star reaches the age of our Sun.
Chromospheric activity of old sun-like stars as a function of age, with sample stars of spectral type G (green) and late-F (blue), with hotter stars (red) as a comparison. Data from clusters is shown as black symbols. No “coasting” type of behavior, i.e. a stopping of the decay of stellar activity, is seen in this sample.
My freshly graduated PhD student, Dr. Rachel Booth, has published the final paper from her PhD thesis together with me and a few coworkers. We have analysed how the magnetic activity of sun-like stars decays as they age, and have used a sample of stars that all have well-determined asteroseismic ages. We find that even at old stellar ages on the main sequence the spin down and therefore the decay of stellar activity continues.
Artist’s impression of the hot Jupiter (right) and its cool host star. Credit: AIP/Kristin Riebe
Together with my colleagues at AIP, and led by Engin Keles, a PhD student in my Star-Planet Systems group, we have published a paper on the detection of potassium in the atmosphere of a Hot Jupiter using high-resolution transmission spectroscopy.
The potassium absorption on HD189733b and HD209458b, Keles, E.; Mallonn, M.; von Essen, C.; Carroll, T. A.; Alexoudi, X.; Pino, L.; Ilyin, I.; Poppenhäger, K.; Kitzmann, D.; Nascimbeni, V.; Turner, J. D.; Strassmeier, K. G.
The Large Binocular Telescope (LBT) was used with the PEPSI spectrograph in this work; both the LBT and our institute published press releases about the result (LBT press release; AIP press release). This is an exciting result because not all Hot Jupiters have potassium detected in their atmospheres, even when they have detections of the similar element sodium. The data will be used to gain more insight into the atmospheric chemistry of Hot Jupiters.
Monthly Notices of the Royal Astronomical Society: Letters, Volume 489, Issue 1, p.L37-L41 (2019).
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.Ok