Exoplanet evolution

Atmospheric escape (evaporation)

The solar/stellar disk: photosphere to corona

AIA 211 Å 2 million Kelvin Active regions

AIA 335 Å 2.5 million Kelvin Active regions

AIA 094 Å 6 million Kelvin Flaring regions

AIA 131 Å 10 million Kelvin Flaring regions

image credit: SDO/NASA

Solar/stellar high-energy output

Stellar activity: rotation & dynamo

Magnetic activity

Magnetic activity

X-ray/EUV emission

Solar corona in X-rays / EUV

"active regions" have magnetic loops that are filled with hot plasma -> this is where most of the X-rays come from

How stars age on the main sequence

loss of angular momentum through stellar wind ("magnetic braking")

Evolution of stellar X-ray emission

"Should" be self-regulating:

Fast rotation -> high activity -> strong stellar wind -> strong magnetic braking

Slow rotation -> low activity -> weak stellar wind -> weak magnetic braking

So all stars should converge in their rotation and activity... right?

How stars age on the main sequence

loss of angular momentum through stellar wind ("magnetic braking")

plot: an **average** over many stars of a given age

Stellar rotation over time

Barnes 2003

Stellar rotation over time

Gondoin 2013

Cluster M35, 110 Myr old

Why sudden braking?

stars with high-latitude spots don't brake well

as soon as low-latitude spots appear, braking becomes strong

Still unsolved question!

History of a star matters to exoplanet atmosphere

Tu et al. 2015

History of a star matters to exoplanet atmosphere

radius shrinkage for a small exoplanet with a host star with fast versus slow spin-down

Rotation vs. X-rays of sunlike stars

Rotation / X-ray evolution versus age seems to be complicated for a single star.

But since the X-ray output is fueled by stellar rotation, is the rotation versus X-ray relationship (neglecting age) simpler?

Rotation vs. X-rays of sunlike stars

Why saturation?

Task:

Come up with ideas why saturation might happen

How to test ideas?

Come up with observing strategies that can test your explanation idea

